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SUMMARY

Derivation of the theoretical autocovariances of an ARMA model is

important for a number of purposes associated with the estimation and testing

of the model. One comon algorithm, due to McLeod (1975), involves solving a

system of linear equations. By deriving the determinant of the matrix of

coefficients in these equations we can ascertain the behaviour of the algorithm

with respect to the statlonarity of the ARMA model.
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McLeod (1975, 1977) presents a method for deriving the theoretical auto-

covariance function of an ARNA model. He notes its uses in simulating AR14A

processes and in deriving the asymptotic distributions of the estimated auto-

correlations. The procedure can also be used in deriving ARMA model residuals

(Ansley and Newbold, 1979); in obtaining the asymptotic distributions of

parameter estimates and residual autocorrelations (McLeod, 1978); and in

calculating the exact likelihood function of the Gaussian ARMA model (Ljung

and Box, 1979; Ansley, 1979; and Dent, 1977). Ansley (1980) and Ansley and

Kohn (1982) have also extended McLeod's algorithm to vector ARNA models.

An alternative and computationally superior procedure to McLeod's in the

univariate case has been proposed by Wilson (1979). It also has the advantage

that the stationarity of the process may be tested directly within the

algorithm generating the autocovariances. The procedure for maximum likeli-

4hood estimation proposed by Dent (1977) also incorporates a test of station-

arity, as do some others in that a Cholesky decomposition of the generated

1 covariance matrix is later derived. However, this is not general.

The purpose of this note is to examine the behaviour of the McLeod

algorithm with respect to stationarity.

Consider the ARNA(p,q) process (Xt ) given by

SX t - - p Xt.p  at - 9lat. 1 - ... - a . (1)

If p s 0 , the process is always stationary. If p > 0 the process is

stationary if and only if the roots of the polynomial equation

kO kz p ' k , 0 (2)

all lie within the unit circle. For later reference, denote the roots of (2)

by 9,2,...,zp . and denote the polWlai1 # z  by #(a).
k-O
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If p > 0 the variance and the first r autocovariances (O*l'%9d

where r -max(p,q), are obtained by solving a system of linear equations.

The matrix of coefficients of these equations, A say, is given in McLeod

(1975) and Ljung and Box (1979). Our interest is in how the stationarity of

(1) affects the solution of these equations. We determine this by expressing

JAI, the determinant of A , in terms of the roots of (2).

Consider the matrix A(t) obtained by replacing #i~ by #it in A

The i th row of A(t) may be expressed as the sum of two row vectors, thus:

+ (O,*1t1 9064t 0ooO) * 1 1,2,...,r41

Clearly, o.i (t), for i *12..r1 where 1 is the unit vector

(1.1....1)'. Hence, #(t) is an eigenvalue of A(t) and so a factor of

IA(t)I. Similarly, #(-t) is a factor of IA(t)I. We may note for later that

#(t)# * t (1-z~t2)

4Suppose z(4a1) is any solution of (2), and j (l,z,...,Z) . We can

4use (2) to write LiS in the form ,--J i 1 U ,,,,~
Jul

Note that if r a p t .Spo now that z is also a solution of

(2, nd *(1,z 1 #...,Zr . Then, A(j~j) 0 which is possible if

and only if A is singular. Thus, (1-z~zj) is a factor of JAI. Further,
i

if #iis replaced by #it in (2) the roots became (tzi : 1 * 29... 9p)

and we can deduce that (1-z z t 2) is a factor of IA(t)I. Thus,
pPp

P(t) A (1-z z 1:2) is a factor of JA(t)I.
is1 Jul

Note that P(t) is a polynomial of degree p(p41) in t *If r a p,

the (k,p42-k)th element of A~t) has the form (# tP + terms of lower power)

for k a 1929...gp~l . Thus, IA(t)I is also a polynomial of degree p(p.1)

It r- then A(t) has the form



A(t) 0
A(t)a

8B(t) 1(t)I

where L(t) is a lower triangular matrix with units along the main diagonal.

Thus, JA(t)I IA P(t)I and A P(t) is (p+1) x (p+1) and has the property

ascribed to A(t) when r *p . Hence, in both cases, IA(t)I is a polynomial

in t of degree p(p+1) .Further, !A(0)I - 1 a P(0) .Thus, taking t - 1,

we have shown that

JAI *I A (1zz) (3)
1.1 j.1

where z1 ,,...,z P are the solutions of (2).



CONCLUSIONS

From (3) it is clear that JAI 0 if and only if

either (1) there is a root on the unit circle;

or (ii) there are a pair of roots symmetric about the unit circle, i.e.

z and z° 1 .

It is comforting to know that the procedure will fail and no auto-

covariances will be generated when the process is non-stationary for either of

the reasons given. On the other hand, it is clear that a non-stationary

process which does not satisfy either (i) or (ii) will yield a set of "auto-

covarianceso. It may be possible to detect this at once, e.g. yo may be

negative or less than Yk in magnitude for some k . In general, however,

these values can be shown to be spurious only by showing that the correspond-

ing covariance matrix is not positive definite.

This may be achieved in a routine manner within the overall procedure.

Dent (1977) suggests a check on the singular value decomposition of the co-

variance matrix and Pagano (1973) discusses a modified Cholesky decomposition.

However, if the purpose of the procedure is estimation we may have to generate

autocovariances from different sets of parameters a large number of times. In

such a case an algorithm such as that proposed by Wilson, which checks

stationarity while it generates autocovariances, would clearly be preferable.
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